Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Antimicrob Agents ; 59(1): 106499, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587677

ABSTRACT

In a bid to contain the current COVID-19 (coronavirus disease 2019) pandemic, various countermeasures have been applied. To date, however, there is a lack of an effective drug for the treatment of COVID-19. Through molecular modelling studies, simeprevir, a protease inhibitor approved for the management of hepatitis C virus infection, has been predicted as a potential antiviral against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Here we assessed the efficacy of simeprevir against SARS-CoV-2 both in vitro in Vero E6 cells and in vivo in a human angiotensin-converting enzyme 2 (hACE2) transgenic mouse model. The results showed that simeprevir could inhibit SARS-CoV-2 replication in Vero E6 cells with a half-maximal effective concentration (EC50) of 1.41 ± 0.12 µM. In a transgenic hACE2 mouse model of SARS-CoV-2 infection, intraperitoneal administration of simeprevir at 10 mg/kg/day for 3 consecutive days failed to suppress viral replication. These findings collectively imply that simeprevir does not inhibit SARS-CoV-2 in vivo and therefore do not support its application as a treatment against COVID-19 at a dosage of 10 mg/kg/day.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Simeprevir/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/therapeutic use , COVID-19/virology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Transgenic , Negative Results , Protease Inhibitors/therapeutic use , Simeprevir/therapeutic use , Vero Cells , COVID-19 Drug Treatment
2.
Phys Chem Chem Phys ; 23(22): 12549-12558, 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1233727

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell after the receptor binding domain (RBD) of the virus spike (S) glycoprotein binds to the human angiotensin-converting enzyme 2 (hACE2). This binding requires the RBD to undergo a conformational change from a closed to an open state. In the present study, a key pair of salt bridges formed by the side chains of K537 and E619, residues at the interfaces of SD1 and SD2, respectively, was identified to promote the opening of the RBD. Mutations of K537Q and E619D reduced their side chain lengths and eliminated this pair of salt bridges; as a result, the opening of the RBD was not observed in the MD simulations. Thus, blocking the formation of this pair of salt bridges is a promising approach for treating novel coronavirus disease 2019 (COVID-19). FDA approved drug molecules were screened by their capabilities of blocking the formation of the key pair of salt bridges, achieved by their positional stabilities in the cavity containing the side chains of K537 and E619 formed in the interface between SD1 and SD2. Simeprevir, imatinib, and naldemedine were identified to possess the desired capability with the most favorable interaction energies.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/chemistry , Drug Evaluation, Preclinical , Humans , Imatinib Mesylate/chemistry , Imatinib Mesylate/pharmacology , Molecular Docking Simulation , Naltrexone/analogs & derivatives , Naltrexone/chemistry , Naltrexone/pharmacology , Protein Domains/drug effects , SARS-CoV-2/chemistry , Simeprevir/chemistry , Simeprevir/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
J Biomol Struct Dyn ; 40(1): 325-336, 2022 01.
Article in English | MEDLINE | ID: covidwho-759721

ABSTRACT

The world has come to a sudden halt due to the incessant spread of a viral pneumonia dubbed COVID-19 caused by the beta-coronavirus, SARS-CoV-2. The main protease of SARS-CoV-2 plays a key role in the replication and propagation of the virus in the host cells. Inhibiting the protease blocks the replication of the virus; therefore it is considered as an attractive therapeutic target. Here we describe the screening of the DrugBank database, a public repository for small molecule therapeutics, to identify approved or experimental phase drugs that can be repurposed against the main protease of SARS-CoV-2. The initial screening was performed on more than 13,000 drug entries in the target database using an energy optimised pharmacophore hypothesis AARRR. A sub-set of the molecules selected based on the fitness score was further screened using molecular docking by sequentially filtering the molecules through the high throughput virtual screening, extra precision and standard precision docking modalities. The best hits were subjected to binding free energy estimation using the MM-GBSA method. Approved drugs viz, Cobicistat, Larotrectinib and Simeprevir were identified as potential candidates for repurposing. Drugs in the discovery phase identified as inhibitors include the known cysteine protease inhibitors, Calpain inhibitor IV and an experimental cathepsin F inhibitor. In order to analyse the stability of the binding interactions, the known cysteine protease inhibitors viz, Simeprevir, calpain inhibitor IV and the cathepsin F inhibitor in complex Mpro were subjected to molecular dynamics simulations at 100 ns. Based on the results Simeprevir was found to be a strong inhibitor of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Repositioning , Protease Inhibitors , SARS-CoV-2/drug effects , Simeprevir , Antiviral Agents/pharmacology , COVID-19 , Cathepsin F/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Simeprevir/pharmacology
4.
Sci Rep ; 10(1): 13866, 2020 08 17.
Article in English | MEDLINE | ID: covidwho-720849

ABSTRACT

The Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus has rapidly spread in humans, causing the ongoing Coronavirus pandemic. Recent studies have shown that, similarly to SARS-CoV, SARS-CoV-2 utilises the Spike glycoprotein on the envelope to recognise and bind the human receptor ACE2. This event initiates the fusion of viral and host cell membranes and then the viral entry into the host cell. Despite several ongoing clinical studies, there are currently no approved vaccines or drugs that specifically target SARS-CoV-2. Until an effective vaccine is available, repurposing FDA approved drugs could significantly shorten the time and reduce the cost compared to de novo drug discovery. In this study we attempted to overcome the limitation of in silico virtual screening by applying a robust in silico drug repurposing strategy. We combined and integrated docking simulations, with molecular dynamics (MD), Supervised MD (SuMD) and Steered MD (SMD) simulations to identify a Spike protein - ACE2 interaction inhibitor. Our data showed that Simeprevir and Lumacaftor bind the receptor-binding domain of the Spike protein with high affinity and prevent ACE2 interaction.


Subject(s)
Betacoronavirus/drug effects , Computational Biology/methods , Coronavirus Infections/metabolism , Drug Discovery/methods , Drug Repositioning/methods , Pneumonia, Viral/metabolism , Aminopyridines/pharmacology , Angiotensin-Converting Enzyme 2 , Benzodioxoles/pharmacology , Betacoronavirus/chemistry , Binding Sites , COVID-19 , Coronavirus Infections/virology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Binding/drug effects , Protein Conformation , Protein Domains/drug effects , Protein Interaction Maps/drug effects , SARS-CoV-2 , Simeprevir/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism
5.
Life Sci ; 258: 118205, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-695845

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) has appeared in Wuhan, China but the fast transmission has led to its widespread prevalence in various countries, which has made it a global concern. Another concern is the lack of definitive treatment for this disease. The researchers tried different treatment options which are not specific. The current study aims to identify potential small molecule inhibitors against the main protease protein of SARS-CoV-2 by the computational approach. MAIN METHODS: In this study, a virtual screening procedure employing docking of the two different datasets from the ZINC database, including 1615 FDA approved drugs and 4266 world approved drugs were used to identify new potential small molecule inhibitors for the newly released crystal structure of main protease protein of SARS-CoV-2. In the following to validate the docking result, molecular dynamics simulations were applied on selected ligands to identify the behavior and stability of them in the binding pocket of the main protease in 150 nanoseconds (ns). Furthermore, binding energy using the MMPBSA approach was also calculated. KEY FINDINGS: The result indicates that simeprevir (Hepatitis C virus NS3/4A protease inhibitor) and pyronaridine (antimalarial agent) could fit well to the binding pocket of the main protease and because of some other beneficial features including broad-spectrum antiviral properties and ADME profile, they might be a promising drug candidate for repurposing to the treatment of COVID-19. SIGNIFICANCE: Simeprevir and pyronaridine were selected by the combination of virtual screening and molecular dynamics simulation approaches as a potential candidate for treatment of COVID-19.


Subject(s)
Antimalarials/pharmacology , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Naphthyridines/pharmacology , Pneumonia, Viral/drug therapy , Simeprevir/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Repositioning , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepatitis C/drug therapy , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Serine Proteases , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
6.
Infect Genet Evol ; 84: 104451, 2020 10.
Article in English | MEDLINE | ID: covidwho-630854

ABSTRACT

WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Nucleocapsid Proteins/chemistry , Viral Envelope Proteins/chemistry , Viral Matrix Proteins/chemistry , Virion/drug effects , Amides , Amino Acid Sequence , Antiviral Agents/chemistry , Betacoronavirus/genetics , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Carbamates , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Cyclopropanes , Doxycycline/chemistry , Doxycycline/pharmacology , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleocapsid Proteins/antagonists & inhibitors , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinoxalines/chemistry , Quinoxalines/pharmacology , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Simeprevir/chemistry , Simeprevir/pharmacology , Sulfonamides , Thermodynamics , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL